Application of s-Version Finite Element Method to Two-Dimensional Fracture Mechanics Problems
نویسندگان
چکیده
منابع مشابه
A novel modification of decouple scaled boundary finite element method in fracture mechanics problems
In fracture mechanics and failure analysis, cracked media energy and consequently stress intensity factors (SIFs) play a crucial and significant role. Based on linear elastic fracture mechanics (LEFM), the SIFs and energy of cracked media may be estimated. This study presents the novel modification of decoupled scaled boundary finite element method (DSBFEM) to model cracked media. In this metho...
متن کاملApplication of the Boundary Element Method to two Dimensional Dynamic Problems of Saturated Porous Media
متن کامل
Application of the Boundary Element Method to two Dimensional Dynamic Problems of Saturated Porous Media
متن کامل
Fracture Mechanics Analysis of Fourth Lumbar Vertebra in Method of Finite Element Analysis
Objective: In this paper, finite element model of the L4 vertebra subjected to combination of compression and flexion loading in isotropic and anisotropic cases is investigated. Methods: In both cases, the vertebra is considered homogeneous. Also, the body of vertebra is divided to cancellous and cortical sections in anisotropic model, but the process is assumed isotropic such as isotropic mode...
متن کاملFracture Mechanics Analysis of Fourth Lumbar Vertebra in Method of Finite Element Analysis
Objective: In this paper, finite element model of the L4 vertebra subjected to combination of compression and flexion loading in isotropic and anisotropic cases is investigated. Methods: In both cases, the vertebra is considered homogeneous. Also, the body of vertebra is divided to cancellous and cortical sections in anisotropic model, but the process is assumed isotropic such as isotropic mode...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Solid Mechanics and Materials Engineering
سال: 2007
ISSN: 1880-9871
DOI: 10.1299/jmmp.1.699